

100W isolated DC-DC converter
Ultra-wide input and regulated single output

FEATURES

- Ultra-wide 4:1 input voltage range
- High efficiency up to 94%
- I/O isolation test voltage: 2250VDC
- Operating ambient temperature range: -40°C
 to +85°C
- Input under-voltage protection, output over-voltage, over-current, short circuit, over-temperature protection
- Five-sided metal shielding package
- Industry standard ¼-Brick package and pin-out
- EN62368 approved

URF48_QB -100W(F/H)R3 series are isolated 100W DC-DC products with 4:1 input voltage. They feature efficiency up to 94%, 2250VDC input to output isolation, operating temperature of -40°C to +85°C, input under-voltage, output over-voltage, over-current, short circuit, over-temperature protection. EN62368 approved and they are widely used in applications such as battery powered systems, industrial controls, electricity, instrumentation, railway, communication and intelligent robotics.

Selection Guide								
	2 111 0	Input Voltage (VDC)		Out	out	Full Load Efficiency(%) Min./Typ.		Max. Capacitive
Certification	Part No. [®]	Nominal (Range)	Max.®	Voltage(VDC)	Current (A) (Max.)	Vin=24V	Vin=48V	Load (µF)
	URF4803QB-100W(F/H) R3		3.3	22.7	87/89	86/88	10000	
	URF4805QB-100W(F/H) R3			5	20	91/93	89/91	6000
	URF4812QB-100W(F/H) R3	48	90	12	8.3	91/93	90/92	2000
CE	URF4815QB-100W(F/H) R3	(18-75)	(18-75) 80	15	6.7	92/94	91/93	2000
	URF4824QB-100W(F/H) R3		24	4.2	91/93	90/92	1000	
	URF4848QB-100W(F/H) R3			48	2.1	91/93	90/92	470

Note:

①Use "F" suffix is for added aluminum baseplate and "H" suffix for heat sink mounting. We recommend to choose modules with a heat sink for enhanced heat dissipation and applications with extreme temperature requirements;

②Exceeding the maximum input voltage may cause permanent damage.

Input Specifications						
Item	Operating Conditions		Min.	Тур.	Max.	Unit
In a state of the	Name in all in most valled as	3.3V output		1776/50	1812/80	
Input Current (full load/no-load)	Nominal input voltage	Others	-	2265/50	2341/80	mA
Reflected Ripple Current	Nominal input voltage		_	30	-	
Surge Voltage (1sec. max.)					90	
Start-up Threshold Voltage			_		18	VDC
	URF4805QB-100W(F/H)R3, URF4815QB-100W(F/H) R3		16	16.5	-	
Input Under-voltage Protection	Others		15	15.5		
Input Filter			Pi filter			
	Module on		Ctrl open circuit or connected to TTL high level (3.5-12VDC)			
Ctrl [®]	Module off		Ctrl pin connected to GND or low level (0-1,2VDC)			v level
	Input current when off			2	10	mA

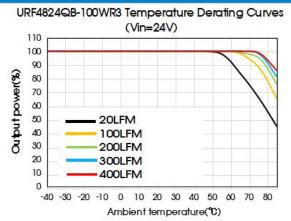
MORNSUN®

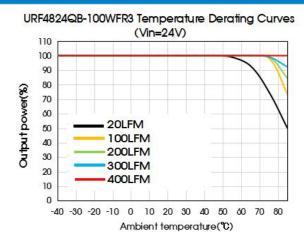
DC/DC Converter URF48_QB-100W(F/H)R3 Series

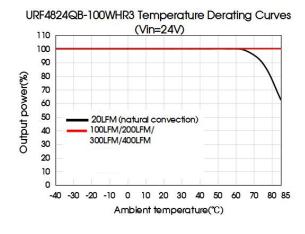
Hot Plug		Unavailable		
Note: ①The voltage of Ctrl pin is relative to input pin GND.				

Item	Operating Conditions		Min.	Тур.	Max.	Unit
Output Voltage Accuracy				±1	±3	
Linear Regulation	Input voltage variation from	n low to high at full load		±0.2	±0.5	%
Load Regulation	5%-100% load			±0.5	±0.75	
Transient Recovery Time	25% load step change			200	500	μs
T	25% load step change	3.3V, 5V output		±3	±7.5	%
Transient Response Deviation		Others		±3	±5	
Temperature Coefficient	Full load	·		_	±0.03	%/ °C
Discussion Alabama	20MHz bandwidth	12V, 15V output		100	200	mVp-p
Ripple & Noise [®]		Others		130	250	
Output Over-voltage Protection	Input voltage range		110	125	160	%Vo
Output Over-current Protection			110	125	190	%lo
Short-circuit Protection			Hiccup, continuous, self-recovery			

Item	Operating Conditions		Min.	Тур.	Max.	Unit
	Electric Strength Test for 1	Input-output	2250			
Insulation Voltage	minute with a leakage current	Input-case	1500	-		VDC
	of 5mA max.	Output-case	500	-		
Insulation Resistance	Input-output, insulation voltage	500VDC	1000	-		MΩ
Isolation Capacitance	Input-output, 100KHz/0.1V			2200		pF
Trim [®]			95	-	110	0/1/
Sense				-	105	%Vo
Operating Temperature				-	+85	
Storage Temperature				-	+125	
Over-temperature Protection	Max. Casing Temperature	Max. Casing Temperature		+105	+115	°C
1 1 T	Wave-soldering, 10 seconds			-	+260	_
Lead Temperature	1.5mm away from the casing, 10 seconds			-	+300	
Storage Humidity	Non-condensing	Non-condensing		-	95	%RH
Vibration			IEC/	EN61373 trai	n 1B catego	ory
Switching Frequency	PFM mode			250		KHz
MTBF	MIL-HDBK-217F@25°C		500			K hours

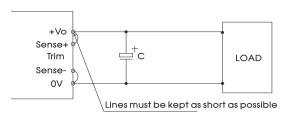

function satisfies the output up to 5%, Vin needs to be higher than 20VDC.


Mechanical Spe	cifications			
Case Material	Aluminum alloy case, blac	Aluminum alloy case, black flame-retardant and heat-resistant plastic bottom case (UL94 V-0)		
	URF48xxQB-100WR3	61.8 x 40.2 x 12.7 mm		
Dimension	URF48xxQB-100WFR3	62.0 x 56.0 x 14.6 mm		
	URF48xxQB-100WHR3	61.8 x 40.2 x 27.7 mm		
	URF48xxQB-100WR3	89g(Typ.)		
Weight	URF48xxQB-100WFR3	109g(Typ.)		
	URF48xxQB-100WHR3	120g(Typ.)		
Cooling method	Natural convection or force	Natural convection or forced air convection		


MORNSUN®

Electro	magne	etic Compatibility (EMC		
Emissions	CE	CISPR32/EN55032, EN50121-3-2	CLASS A and CLASS B (see Fig. 2 for recommended circuit)	
ETHISSIONS	RE	CISPR32/EN55032, EN50121-3-2	CLASS A and CLASS B (see Fig. 2 for recommended circuit)	
	ESD	IEC/EN61000-4-2, EN50121-3-2	Contact ±6KV Air ±8KV	perf.Criteria B
	RS	IEC/EN61000-4-3, EN50121-3-2	10V/m	perf.Criteria A
	EFT	IEC/EN61000-4-4, EN50121-3-2	±2KV(see Fig. 2 for recommended circuit)	perf.Criteria A
Immunity	0	ENEO101 0 0	differential mode ±1KV, 1.2/50us,	
Surge		EN50121-3-2	source impedance 42 $\!\Omega$ (see Fig.2 for recommended circuit)	perf.Criteria B
	CS	IEC/EN61000-4-6, EN50121-3-2	10 Vr.m.s	perf.Criteria A

Typical Performance Curves



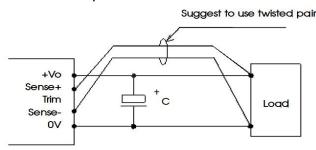
Notes:

1. Product application thermal design should be referred to the recommended PCB layout and recommended heat dissipation structure, please see DC-DC Converter Application Notes for specific operation.

Remote Sense Application

1. Remote Sense Connection if not used

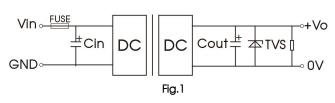
MORNSUN®


MORNSUN Guangzhou Science & Technology Co., Ltd.

MORNSUN Guangzhou Science & Technology Co., Ltd. reserves the copyright and right of final interpretation

- (1) If the sense function is not used for remote regulation the user must connect the +Sense to +Vo and -Sense to 0V at the DC-DC converter pins and will compensate for voltage drop across pins only.
- (2) The connections between Sense lines and their respective power lines must be kept as short as possible, otherwise they may be picking up noise, interference and/or causing unstable operation of the power module.

2. Remote Sense Connection used for Compensation



- (1) PCB-tracks or cables/wires for Remote Sense must be kept as short as possible.
- (2) In cables and discrete wiring applications, twisted pair or other techniques should be implemented.
- (3) Using remote sense with long wires may cause unstable operation. Note that large wire impedance may cause oscillation of the output voltage and/or increased ripple. Consult technical support or factory for further advice of sense operation.
- (4) We recommend using adequate cross section for PCB-track layout and/or cables to connect the power supply module to the load in order to keep the voltage drop below 0.3V and to make sure the power supply's output voltage remains within the specified range.

Design Reference

1. Typical application

- (1) We recommended using the recommended circuit shown in Fig.1 during product testing and application, otherwise please ensure that at least a 220µF electrolytic capacitors is connected at the input in order to ensure adequate voltage surge suppression and protection.
- (2) We recommended increasing the value of Cin and pay attention to the unstable input voltage if the product input side is paralleled with motor drive circuit and/or larger energy transient circuits, to ensure the stability of input terminal and avoid repeatedly start-up problems due to input voltage lower than under-voltage protection point.
- (3) We recommended increasing the output capacitance with limited to the capacitive load specification and/or increasing the voltage clamping circuit(such as TVS) if the output terminal is inductive device such as relay or a motor, to ensure adequate voltage surge suppression and protection.
- (4) Input and/or output ripple can be further reduced by appropriately increasing the input & output capacitor values Cin and Cout and/or by selecting capacitors with a low ESR (equivalent series resistance). Also make sure that the capacitance is not exceeding the specified max. capacitive load value of the product.

Vout(VDC)	Fuse	Cin [®]	Cout	TVS
3.3			680µF	SMDJ6.0A
5			470µF	SMDJ6.0A
12	10A, slow blow	000	0005	SMDJ14A
15		220µF	220µF	SMDJ17A
24			1005	SMDJ28A
48			100µF	SMDJ54A

Note:

①Please pay attention to the ambient temperature of the product when using an external capacitor, increase the electrolytic capacitor values to at least 1.5 times the original parameter if the ambient temperature is low(such as -25°C).

2. EMC solution-recommended circuit

We recommended using the recommended circuit shown in Fig.2 during product EMC testing and application.

MORNSUN®

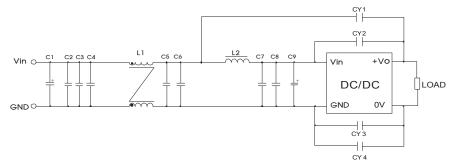
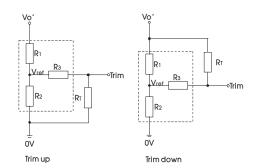



Fig. 2

Function	Recommended Component value of 05-48V	Recommended Component value of 3.3V	CLASS B Components	CLASS A Components
Ma at FFT and a vers	$150\muF$ electrolytic capacitor	150 µ Felectrolytic capacitor	1	C
Meet EFT and surge	47 μ F electrolytic capacitor	470 µ Felectrolytic capacitor	. 9	C
	150 μ F electrolytic capacitor	150 µ Felectrolytic capacitor	21	C
	47 μ F electrolytic capacitor	470 µ Felectrolytic capacitor	C9	
	2.2 µ F ceramic capacitor	4.7 µ Fceramic capacitor	C2、C3、C4、C5、C6、C7、C8	
Meet conducted emission and radiated emission	2mH, recommended to use MORNSUN P/N: FL2D-A2-202(C)	2mH, recommended to use MORNSUN P/N: FL2D-A2-202(C)	LI	
	1.5 μ H inductance	1.5 µ Hinductance	L2	
	1nFY1 safety capacitor	1nFY1 safety capacitor	CY1、CY2	
1	1nFY1 safety capacitor	2.2nF Y1 safety capacitor	CY3、CY4	CY3

3. Trim Function for Output Voltage Adjustment (open if unused)

Calculation formula of Trim resistance:

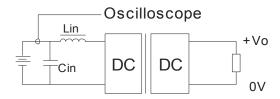
up: RT=
$$\frac{aR_2}{R_2-a}$$
 -R3 $a = \frac{Vref}{Vo'-Vref}$ R1

down:
$$R_T = \frac{\alpha R_1}{R_1 - \alpha} - R_3$$
 $\alpha = \frac{Vo' - Vref}{Vref} \cdot R_2$

Note:

 R_T = Trim Resistor value;

a = self-defined parameter;


TRIM resistor connection (dashed line shows internal resistor network)

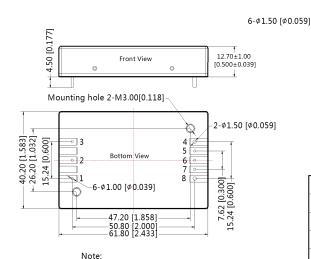
Vo'= desired output voltage (±10% max.)

Vout(VDC)	R1(KΩ)	R2(K Ω)	R3(K Ω)	Vref(V)
3.3	5	3	10	1.24
5	3.036	3	10	2.5
12	11.00	2.87	15	2.5
15	14.03	2.8	15	2.5
24	24.872	2.87	15	2.5
48	53.017	2.913	15	2.5

Note: When using the Trim down function make sure that the RT resistor value is calculated correctly. If the Trim pin is shorted with +Vo, or its value is too low, then the output voltage Vo' would be lower than 0.9Vo, which may cause the product to fail.

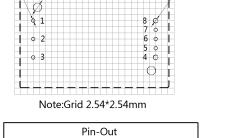
4. Reflected ripple current--test circuit

Note: Lin(4.7 μ H), Cin(220 μ F, ESR < 1.0 Ω at 100 KHz)


- The products do not support parallel connection of their output.
- The product test process shall ensure that the current of the input terminal meets the requirements of the starting current to ensure that the power supply of the product does not suffer from under-power.
- 7. For additional information please refer to DC-DC converter application notes on www.mornsun-power.com

Dimensions and Recommended Layout (URF48xxQB-100WR3)

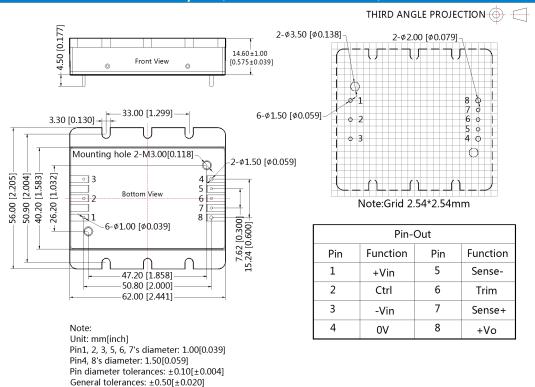
THIRD ANGLE PROJECTION


2-\$2.00 [\$0.079]

Unit: mm[inch]

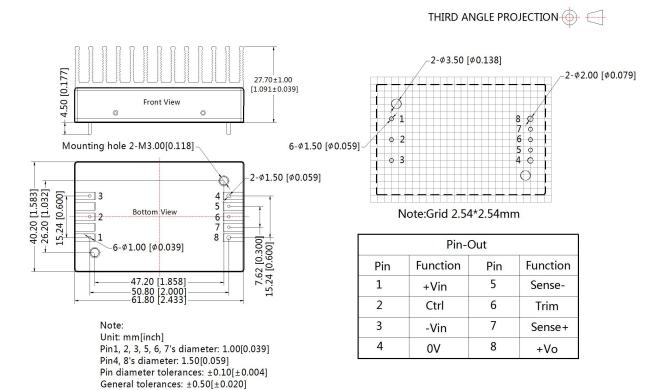
Pin1, 2, 3, 5, 6, 7's diameter: 1.00[0.039] Pin4, 8's diameter: 1.50[0.059]

Pin diameter tolerances: ±0.10[±0.004] General tolerances: $\pm 0.50[\pm 0.020]$ Mounting hole screwing torque: $\bar{\text{Max 0.4 N}}\cdot\text{m}$



2-\$\phi 3.50 [\$\phi 0.138]

Pin-Out					
Pin	Function	Pin	Function		
1	+Vin	5	Sense-		
2	Ctrl	6	Trim		
3	-Vin	7	Sense+		
4	0V	8	+Vo		


Dimensions and Recommended Layout(URF48xxQB-100WFR3)

URF48xxQB-100WHR3 Dimensions and Recommended Layout

Mounting hole screwing torque: Max 0.4 N·m

Mounting hole screwing torque: Max 0.4 N·m

Notes:

- For additional information on Product Packaging please refer to www.mornsun-power.com. Packing bag number: 58010113(URF48xxQB-100WR3), 58200069(URF48xxQB-100WFR3), 58220017(URF48xxQB-100WHR3);
- 2. The maximum capacitive load offered were tested at input voltage range and full load;
- 3. Unless otherwise specified, parameters in this datasheet were measured under the conditions of Ta=25°C, humidity<75%RH with nominal input voltage and rated output load;
- 4. All index testing methods in this datasheet are based on company corporate standards;
- 5. We can provide product customization service, please contact our technicians directly for specific information;
- 6. Products are related to laws and regulations: see "Features" and "EMC";
- 7. Our products shall be classified according to ISO14001 and related environmental laws and regulations, and shall be handled by qualified units.

Mornsun Guangzhou Science & Technology Co., Ltd.

Address: No. 5, Kehui St. 1, Kehui Development Center, Science Ave., Guangzhou Science City, Huangpu District, Guangzhou, P. R. China Tel: 86-20-38601850 Fax: 86-20-38601272 E-mail: info@mornsun.cn www.mornsun-power.com

MORNSUN®